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LETI'ER TO THE EDITOR 

On Monte Carlo generation and study of anisotropy of lattice 
anima 1 s 

P M Lam? 
Institut fur Theoretische Physik, Universitat zu Koln, 5 Koln 41, West Germany 

Received 12 November 1985 

Abstract. A new type of cluster in the universality class of lattice animals is introduced 
based on a stochastic form of the Martin algorithm by the Monte Carlo method. Lattice 
animals with sizes up to 1000 sites are generated. The asymptotic radius of the gyration 
exponent is consistent with the value 0.64, corresponding to a fractal dimension of 1.56. 
An investigation of anisotropy of these animals shows that small animals are anisotropic 
while larger ones are not. 

Lattice animals are much studied objects in connection with clustering and nucleation 
[l-31 and in percolation theory [4-61. Statistics and properties of animals have been 
investigated by means of exact enumeration [7,8], Monte Carlo methods [4,9-121, 
momentum space renormalisation group [ 131 and phenomenological renormalisation 
group [14]. Recently Duarte [15] studied lattice trees which are believed to share the 
same universality class of lattice animals using a Monte Carlo method similar to that 
of [4]. It is difficult to generate large lattice animals directly using the Monte Carlo 
method. If one generates percolation clusters at a constant value of the site occupancy 
p with p less than the percolation threshold pc ,  then those clusters with characteristic 
linear dimension R >> [ ( p )  where ( ( p )  is the correlation length will be self-similar with 
the fractal dimension of lattice animals. However, since the probability of finding an 
N-site cluster with R >> ( ( p )  decreases exponentially with N [5,6], it is difficult to 
generate lattice animals with large N. Using a method similar to that of the enrichment 
model for linear polymers, Havlin er a1 [12] generated lattice animals of size about 
300. In this letter we wish to introduce a new method for generating directly large 
lattice animals by the Monte Carlo method. It is a stochastic form of the Martin 
algorithm [8,16]. A similar version of it had already been used to produce self-avoiding 
walk configurations with satisfactory results [ 173. It is simply implemented by taking 
the FORTRAN program given in [8] and changing statement 6 to 

if(iocc(inow).eq.O.and.ranf(O).lt.p)goto 3 

Here ranf(0) generates a real random number between zero and one and the fixed 
parameter p is a real number between zero and one. In addition, since in the Monte 
Carlo method, not all the neighbouring sites of the lattice animal are investigated, the 
information on which neighbouring sites had been investigated should be stored for 
each site of the animal. Clearly for p = 1 this reduces to the exact enumeration program 
of lattice animals. We have calculated the radius of gyration of clusters generated this 
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way for p = 0.2, 0.3 and 0.4. For each p ,  a fixed number of configurations N, of lattice 
animals of size N are generated and their radii of gyration measured and averaged 
using one set of random numbers. The whole process is then repeated using different 
sets of random numbers. Each set of random numbers is called one trial. The radii 
of gyration obtained in different trials are then averaged over the total number of trials 
NT. Since each trial is an independent event in contrast to the different configurations 
of lattice animals produced in the same trial, we can estimate the error by calculating 
the fluctuations in the averaged radius of gyration over the NT trials. We have generated 
lattice animals with sizes up to N = 1000, with N, = 4000 and NT up to 500. The values 
of the radii of gyration differ for different p ,  but the exponent obtained by taking the 
slope of the log R, against log N plot is consistent with the value of 0.64 for large N, 
the value for lattice animals in two dimensions [14]. In figure 1 we give the log R, 
against log N plot for the three values of p .  The result for the exponent defined through 
R,- N ” ,  where R, is the radius of gyration, is shown in figure 2. The values of the 
exponent are obtained by taking successive slopes in the log-log plot of R, against N. 

Recently there has been a lot of interest in the study of anisotropy in random fractal 
clusters [18, 191. Family et al [18] studied the anisotropy of lattice animals on the 
square lattice using the exact enumeration method. They diagonalised the radius of 
gyration tensor R$ and calculated the principal radii of gyration. The anisotropy A ,  
of an N-site cluster is then defined to be the ratio RZhi,min/R%,max, where R%,min and 
RL,,,, are the smaller and the larger eigenvalues of the radius of gyration tensor, 
respectively. But since this ratio is calculated for each particular configuration of the 
animal and then the average of these ratios is taken over the different configurations, 
this only measures on average how anisotropic any particular lattice animal can be. 

In N 

Figure 1. Log-log plot of R, against N for p = 0.2 (+), 0.3 (0) and 0.4 (0). Asymptotic 
slopes of all three curves give an exponent compatible with 0.64 
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Figure 2. Value of the exponent obtained by taking successive slope of the curves in figure 
1 ,  plotted against log N, for p = 0.2 (+), 0.3 (0) and 0.4 (0). 

It does not measure the anisotropy of lattice animals in the sense of whether or not 
lattice animals are anisotropic when averaged over all configurations. Here we measure 
anisotropy in a different way [ 5 ] .  We choose the origin of the coordinate system at 
the centre of mass of the animal with X and Y directions the same as in the original 
square lattice. We define axis sites of the animal as sites with centre of mass coordinates 
xi,  yi such that \ x i /  or lyil is less than 0.5 and diagonal sites as sites such that \ x i  -yil  
or Ixi + yil is less than 0.5. (We have taken unit lattice spacing.) We calculate separately 
the quantities ( R ; )  = (N , ’X(x :+y : ) )  and ( R L ) = ( N ; ’ X ( x f + y : ) )  in which the summa- 
tion is over the Nx axis and ND diagonal sites respectively and we average them over 
the animal configurations. The difference between (R: )  and ( R L )  is a measure of the 
anisotropy. In table 1 we show the values (R$)”2  and (R, )  and the ratios 

different animal sizes N. It is seen that these ratios are always less than one. In a 
circle of radius R on a two-dimensional lattice with all sites occupied, the density of 
sites on the plane and the density of sites on the axis are constant. We have ( R 2 )  = $R2 
and ( R $ ) = f R Z .  This gives ( R : ) / ( R 2 )  = ( R & ) / ( R 2 )  =$. For lattice animals, neither the 
sites on the plane nor on the axis or diagonals have constant density. We therefore 
do not know a priori what value these ratios should approach in case of isotropy, 
except that they should approach the same value less than unity. This seems to be the 
case here for large N. But for N less than about 500 there is definite evidence of 
anisotropy in lattice animals. 

2 1/2 

(R2 x )  1/2 / ( R 2 ) ” 2  and ( R & ) 1 / 2 / ( R 2 ) 1 / 2  where (R2) l / ’  is the average radius of gyration, for 



L158 Letter to the Editor 

Table 1. ( R 2 ) ' l 2 ,  (R$) ' l2 ,  (Rb) .  

N 

p = 0.3 
50 

100 
200 
500 
600 
700 
800 

p = 0.4 
10 

100 
500 
700 

1000 

4.3242 1 0.0205 
6.6632 10.0507 

10.5036 f0.1450 
19.3323 f 0.4469 
21.7447 * 0.5862 
25.4910* 0.7794 
27.3258 f 0.8751 

1.6925 i 0.0025 
5.5476f0.0304 

14.4695 f 0.0988 
18.0875*0.1580 
22.9622 f 0.0628 

3.1064 f 0.0 197 
4.5552 f 0.0595 
7.1473*0.1524 

13.3197 * 0.5507 
14.3716* 0.6874 
16.4477 * 1.0043 
18.0137i0.9100 

1.2744 f 0.0023 

9.7216*0.1029 
12.5087 f0.1735 
15.5094*0.0480 

3.9349 f 0.0297 

3.1488 f 0.0207 
4.8463 * 0.0600 
7.5475 f0.1654 

12.3208f0.4196 
14.3707 f0.6014 
16.9405 f 0.7720 
17.0580i0.9291 

1.6591 f 0.0024 
4.3062 f 0.0326 

10.5950f 0.1 141 
12.6670f0.1670 
15.7670 i 0.1 504 

In order to make sure that lattice animals are indeed anisotropic at small N, we 
have calculated the measure of anisotropy as defined above by exact enumeration (Le 
with p = 1) up to N = 13. The result is shown in table 2. We see that up to these sizes, 
lattice animals on the square lattice are indeed anisotropic. 

Table 2. Same as table 1 but with exact enumeration. 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.7201 
0.9105 
1.0809 
1.2383 
1.3854 
1.5243 
1.6565 
1.7833 
1.903 1 
2.0232 
2.1376 

0.5443 
0.6977 
0.8777 
0.961 1 
1.0438 
1.1426 
1.2333 
1.3299 
1.4143 
1.5037 
1.5819 

0.7201 
0.9810 
0.9694 
1.1027 
1.1823 
1.2923 
1.3633 
1.4552 
1.5326 
1.6200 
1.6940 

The author is indebted to D Stauffer for helpful discussions and to the Max Planck 
Gesellschaft for financial support. 
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